The Synthesis of Sclerotiorin and of an Analogue of Rotiorin

By R. Chong, R. R. King, and W. B. WHALLEY*

(The School of Pharmacy, The University, London, W.C.1)

Summary The total synthesis of the fungal metabolite sclerotiorin, and of an analogue of the cognate metabolite, rotiorin, are described.

Thus, 3,5-dibenzyloxy-4-methylphenylacetic acid (3; $R^1 = PhCH_2$, $R^2 = OH$), [available from 3,5-dihydroxy-4methylbenzoic acid] was converted successively into the acid chloride (3; $R^1 = PhCH_2$, $R^2 = Cl$), the diazo-ketone (3; $R^1 = PhCH_2$, $R^2 = CHN_2$), and the ω -bromophenylacetone (3; $R^1 = PhCH_2$, $R^2 = CH_2Br$). Treatment of (3; $R^1 =$ $PhCH_2$, $R^2 = CH_2Br$) with boron tribromide at -70° in methylene chloride gave 1-(3,5-dihydroxy-4-methylphenyl)-3-bromoacetone (3; $R^1 = H$, $R^2 = CH_2Br$). The di-Oacetate (3; $R^1 = Ac$, $R^2 = CH_2Br$), triphenylphosphine,

† Conditions critical.

propylene oxide, and methylene chloride were kept at room temperature for 16 hr. when the solvent was removed in vacuo at $< 50^{\circ}$. A solution of the residue in 1,2-dichlorobenzene was evaporated in vacuo at $< 40^{\circ}$ to remove 2-bromopropan-1-ol.[†] A solution of the resultant phosphorane in 1,2-dichlorobenzene containing (\pm) -2,4-dimethylhex-trans-2-enal (4), was heated at 130° under nitrogen for 16 hr. to yield (\pm) -1-(3,5-diacetoxy-4-methylphenyl)-5,7-dimethylnona-transtrans-3,5-dien-2-one (5). This was converted (5% sodium hydroxide solution under nitrogen) into the corresponding phenol, m.p. $78-80^{\circ}$, which exists as the stable hydrate (6). Formylation of (6) with triethyl orthoformate (benzeneether-toluene-p-sulphonic acid) in nitrogen during 5 min., followed by dilution with light-petroleum and isolation at 0° in nitrogen, 35 min. later[†] gave (\pm) -1-(2-formyl-3,5-dihydroxy-4-methylphenyl)-5,7-dimethylnona-trans-trans-3,5-

dien-2-one (7; R = H), m.p. 123°, which was chlorinated to (\pm) -(7; R = C) during 30 min. at room temperature using

In continuation of our investigations in the sclerotiorin group of fungal metabolites, we report the total synthesis of sclerotiorin¹ (1; R = Ac) and of isochlororotiorin (2), an analogue of rotiorin.²

sulphuryl chloride in methylene chloride containing propylene oxide.

Cyclisation of (7; R = Cl) with phosphorus pentoxide in ethanol furnished the very unstable pyronoquinone (8), $[(\pm)$ -aposclerotiorin], indistinguishable (t.l.c., i.r., u.v., and mass spectra) from (+)-aposclerotiorin, m.p. 173°, obtained by the action of zinc-acetic acid on (+)-sclerotiorin. Natural aposclerotiorin on treatment with potassium acetate furnished (+)-(7; R = Cl), spectroscopically and chromatographically identical with the synthetic material.

Treatment of (+)-(8) (used as a relay) with lead tetraacetate in acetic acid gave a substance having the general properties of sclerotiorin (1; R = Ac). Thus, although acetoxylation at C-7 would be non-specific, the product had the correct n.m.r. spectrum and was indistinguishable on the basis of t.l.c., i.r., u.v., and mass spectra from authentic (+)-sclerotiorin.¹ Since synthetic (1; R = Ac) will contain species of both configurations at C-7 our work constitutes a total synthesis of (+)-sclerotiorin¹ and of (-)-sclerotiorin³ and the first total synthesis within this novel group of fungal metabolites.

Treatment of (+)-(7; R = Cl) with ammonium acetate gave aposclerotioramine.¹ (+)-2,4-Dimethylhex-trans-2enal (4) was prepared by the base-catalysed condensation of (\pm) -2-methylbutyraldehyde with propionaldehyde followed by purification by distillation and by forming the 2,4-dinitrophenylhydrazone which was spectroscopically indistiguishable from the derivative from (+)-sclerotiorin.⁴

Reaction of the hexenal (4), with ethyl bromoacetate and triphenylphosphine in chloroform containing propylene oxide at the boiling point during 24 hr., followed by hydrolysis of the ester gave (\pm) -4,6-dimethylocta-2,4-trans-transdienoic acid, indistinguishable on the basis of t.l.c., i.r., u.v., and n.m.r. spectra from authentic (+)-acid.⁴

Hydrolysis of (+)-sclerotiorin (1; R = Ac) with sodium ethoxide at 0° gave (+)-deacetylsclerotiorin (1; R = H) which regenerated (+)-sclerotiorin upon acetylation.

‡ All new compounds had the requisite analytical and spectral characteristics.

¹ F. M. Dean, J. Staunton, and W. B. Whalley, J. Chem. Soc., 1959, 3004.

² J. S. E. Holker, J. Staunton, and W. B. Whalley, J. Chem. Soc., 1969, 3004.
² J. S. E. Holker, J. Staunton, and W. B. Whalley, J. Chem. Soc., 1963, 3641.
³ G. A. Ellestad and W. B. Whalley, J. Chem. Soc., 1965, 7260.
⁴ R. A. Eade, H. Page, A. Robertson, K. Turner, and W. B. Whalley, J. Chem. Soc., 1957, 4913.
⁵ E. J. Haws, J. S. E. Holker, A. Kelly, A. D. G. Powell, and A. Robertson, J. Chem. Soc., 1959, 3598.
⁶ B. C. Fielding, E. J. Haws, J. S. E. Holker, A. D. G. Powell, A. Robertson, D. W. Stanway, and W. B. Whalley, Tetrahedron Letters, 1960, No. 5, 24.

(Received, November 13th, 1969; Com. 1731.)